
TDA Progress Report 42-108 February 15, 1992

Using Single Buffers and Data Reorganization to Implement
a Multi-Megasample Fast Fourier Transform

R. D. Brown
Communications Systems Research Section

Data ordering in large fast-Fourier transforms (FFT’s) is both conceptually and
implementationally difficult. This article describes a method of visualizing data
orderings as vectors of address bits, which enables the engineer to use more efficient
data orderings and reduce double-buffer memory designs to singlebuffer designs.
In particular, this article details the difficulties and algorithmic solutions involved
in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.
Although the particular solutions mentioned may be directly applicable only to the
particular system for which they were intended, the methodology by which these
solutions were found could be useful to anyone confronted with similar problems.

1. Introduction
The Search for Extraterrestrial Intelligence (SETI) Pro-

gram has recently completed the wire-wrap prototype
wideband spectrum analyzer (WBSA) [l] and is about to
start design of the sky-survey signal processor (SSSP) [2).
Both of these machines are high-speed fast-Fourier trans-
form (FFT) processors followed by special-purpose signal-
detection hardware. In the course of building the WBSA,
a particular methodology grew for the design of FFT ma-
chines (memory boards, in particular). These methods
have cut the memory requirements for the proposed SSSP
system by about 50 percent.

This article begins with a brief description of the SSSP
to familiarize the reader with the system from which exam-
ples will be drawn. The backbone of this article is the data-
reordering scheme, which is followed by a section outlining
the method of replacing double buffers with single buffers.
Finally, the design of the SSSP’s input buffer (INBUF)
board is presented as an illustration of the design tech-
niques.

II. Brief Description of the SSSP System
Figure 1 is a block diagram of one of the eight identical

processors that will constitute the SSSP. Each processor of
the system accepts complex samples a t a rate of 80 MHz
and performs an FFT on each group of 4 megasamples
(Msamples). Although the processor’s internal clock runs
a t only 40 MHz, the processor can accept data at 80 MHz
because it has two input lines, the high-input line and the
low-input line. The high data point is the one that was
sampled first and held until the low point was sampled.
Every 25 nsec (40-MHz rate), two sample points enter the
processor, and two frequency values from a previous spec-
trum leave the processor at the back end of the pipe.

A pipeline configuration was chosen to facilitate real-
time processing. To accommodate a 4-megapoint (Mpoint)
FFT, the data are configured as a 4096-by-1024 matrix,
and the FFT is broken into two orthogonal FFT’s, one for
the data in each column and one for the data in each row.
Each FFT is further broken into radix-4 FFT stages. The
two groups of these stages are called super-stages.

294

Proper FFT implementation demands that the first
FFT super-stage be performed on points that have the
largest possible sampling interval between them, which
indicates the columns of the matrix. Accordingly, the
INBUF board transposes the matrix before the first of
the two FFT super-stages. The result of the transposition
is a 1024-by-4096 matrix, in which the first new row con-
tains the first point of all the old rows, the second new row
contains the second points, and so on.

Using the convention that the matrix is always oriented
so that FFT’s are performed on rows, the first super-
stage performs an F F T on each 4kilopoint (kpoint) row.
Then the matrix is transposed by the corner-turn mem-
ory (CTM) board to prepare it for the second super-stage.
The 1-kpoint FFT’s are performed on each of the new
rows, resulting in a 4Mpoint spectrum of frequency bins.

The real adjust (RADJ) board reorganizes (but does
not transpose) these frequency values for its own purposes.
The unscrambler (UMR) board undoes the shuffling done
by the RADJ board and transposes the matrix for a final
time, putting the frequencies in sequential order.

111. Relating Data Order to Addressing
Consider the sampled data stream as an array, in the

case of the SSSP, a 222-point array. As such, each data
point can be specified by a 22-bit index number. Since
the SSSP is a dual-rail system, 221 of the samples come in
on the high rail, and the other 2’l enter on the low rail.
The 22-bit index number can be divided as follows: One
bit, known as the hi/lo bit, indicates which rail the data
came in on, 0 for high, 1 for low. (As a convention, this
bit is always the least-significant bit, lsb.) The remaining
21 bits form a 21-bit binary counter, which increments
with each clock cycle. As a design convention, the bits
of this data counter are labeled CO (lsb) through (720, the
most-significant bit (msb).

the time counter are sections of the high- and low-data
channels, one data point per channel per clock cycle. The
data-order index of each data point is given in decimal
and binary forms inside the data box. Because data in
this example are in sequential order, the bits in the time
counter are in the same order as they appear in the data-
order index. If a different order had been chosen, the bits
would have been scrambled, but sequential order is easiest
to visualize. In sequential order, the index for data on
the high channel will always be exactly double the time
counter, and the index for data on the low channel will
always be one more than the simultaneous data on the
high channel.

Once this 22-bit index number is established for a given
data point and the addressing algorithm is known, every-
thing that happens to that data point is also known. The
data point is stored in a memory array using the 22-bit
number as an address, so it is known where the data are
stored. When the data are read out of memory, their chan-
nels (high or low) and their positions in the data stream
are based on those same 22 bits. In the 4-bit example
in Fig. 3, data (in the boxes) enter in sequential order.
Above each box is its 4 b i t data-order index. The 3-bit
time counter always matches the 3 left-most index bits,
and the right-most bit indicates the high or low channel.
The resultant pattern, A0 through AB, differentiates each
data point by identifying its position in the sequential data
stream (0-15).

As an example, these points are output at the bottom
of Fig. 3 in high-low (HL) order. An N-point data stream
in HL order looks like:

HI CHANNEL: 0, 1, 2,

3, 4, 5 , ‘ ‘ e

LO CHANNEL:
At each clock cycle in Fig. 2, two data points enter the

SSSP, one on the high data rail and one on the low data
rail. Each of these data points has its own 22-bit index
number, and they must be different. Because they enter
the board at the same time, the counter bits (the most-
significant 21 bits) are the same. The only difference is the
hi/lo bit, which will be a 0 for the data point on the high
rail and a 1 for the data point on the low rail. Figure 2
depicts this graphically for three clock cycles in the middle
of a spectrum.

At each of the three clock cycles, the value of the time
counter is given in both decimal and binary form. Below

To organize data points in HL order, the msb of the
data-order index moves to the least-significant position.
The other bits are all in sequential order, but they are
shifted to the left by one bit. Again, the time counter
matches with the left-most 3 index bits, but now those
bits are AI, Al , and Ao. (They were A3, A2, and AI in
sequential order.) The right-hand bit that indicates the
high or low channel is now AB. However, when these bits
are written in their correct numerical order, A ~ A z A ~ A o ,

295

.

they are the correct binary representation of each data-
order index (the large numbers inside the boxes).

In general, any data-reordering scheme (from sequential
order t o HL order in the above example) can be viewed as
a transformation of the data-index values. In this way, the
SSSP data index is viewed as a 22-bit vector and the trans-
formation as a 22-by-22 matrix. The resultant new vector
is composed of 22 new data-index values. Each new index
value is a function of one or more of the original index
values. For simple reordering (as in the above example),
each new index value is a function of exactly one old index
value, and the transformation is simply a reordering of the
bits of the data index. Other, more complex, transforma-
tions are also useful.

IV. Addressing Single Buffers and Double
Buffers

The SSSP is based on the decision to use single buffers
instead of double buffers wherever possible, sacrificing sim-
plicity for the sake of hardware savings, board space, and
lower power consumption. In the case of the INBUF
board, which will be discussed later, this amounts to
8 Mbytes of memory, saving $8400 and a maximum of
18 W for each of the 8 copies that will be made. Sav-
ings for the CTM board are treble this, a net total of over
$200,000 and 384 W for the 8 copies of the CTM.

Figure 4 shows the way in which the use of single buffers
differs from double buffers. In each example, the WRITE
line tells which spectrum is being written at any particular
time, and the READ line tells which one is being read.
(Notice that the first spectrum to be read is unlabeled
because it contains no real data and is discarded.) Below
the WRITE and READ lines, the addressing lines tell the
addressing used for each buffer.

Notice that when using a double buffer, only two ad-

der. Whenever a spectrum is being read out of one buffer
(using the read addressing), another spectrum is being
written to the other buffer (using the write addressing).
Then the latter buffer is read, while a third spectrum is
being written into the former buffer.

I dressing orders are required, a read order and a write or-

For simplicity’s sake, it is often convenient to write the
incoming data in sequential order and read them out in
transformed order; call the transformed order T. If the
order of the data can be written as an N-point vector, then
the transformation between two orders can be written as
an N-by-N matrix. Thus, each data order in Fig. 4 is

labeled as sequential or as a power of the transformation
matrix, T, a 5-by-5 matrix. The columns of each matrix
correspond to the different address lines of the memory
buffer, A to E from top to bottom. The order of these
columns mirrors the order of the address bits in the &bit
data-order index.

I t is important to realize that if data are to be read out
in sequential order after the transformation, they would
have to be written in inverse-T order. This is a very im-
portant basic concept: Data can be written in any order,
as long as the transformation between the written order
and the read order is T. For example, if instead of being
written sequentially, the data order were transformed so
that data were written in W order, they would have to be
read out in R order such that R = T * W.

This idea is the basis for the single-buffer addressing
schemes. Using read-write cycles, in which a given address
is read then overwritten, the first spectrum is written se-
quentially. However, when it is read out later (again using
read-write cycles), the second incoming spectrum must be
written in the same order that the first is going out. (If
new data were written in a different order, some memory
locations would be rewritten before they were read.) This
means that when Spectrum 0 is read out in transformed
order, T, Spectrum 1 is being written in T order.

This is the problem. If the second spectrum is read out
in T order, as in the double-buffer example, it would ap-
pear in the same order it went in, sequentially. So it must
be read out in T * T order. This means that Spectrum 2
will be written in T * T order and read in T * T * T or-
der, Spectrum 3 will be written in T * T * T order, and so
on. Since there are only a finite number of ways to reor-
ganize the data stream, the pattern will eventually repeat.
Reworded in more rigorous terms, a finite P exists such
that TP = = I, where I is the 5-by-5 identity ma-
trix representing sequential order. However, if P is very
large, the cycle will take a long time to repeat, requiring
extra counters, and leading to complicated address equa-
tions and confused engineers. The trick is to simplify the
address patterns as much as possible by minimizing P.

V. Interleaving
This section deals with the practical constraints of the

present technology. The first difficulty one is likely to run
into is the speed of available memories. The particular
memory modules used in this processor have a 100-nsec
read/write cycle time. (Faster memories are available but
not in sizes that are practical for the amount of data re-
quired.) Because the clock period is 25 nsec, new data can

296

be written only every fourth clock cycle. In the meantime,
data must be stored in registers until the start of the next
lO@nsec cycle (see Fig. 5) . Because 2 new points are ready
to be written each clock cycle (25 nsec), 8 points accumu-
late every 100 nsec. All 8 data points must be written at
the same time, requiring 8 memory modules operating in
parallel (see Fig. 6).

LiLewbe, 8 data points are read out during each
100-nsec read/write cycle. Two data points are selected
by the multiplexer during each of the next four clock cy-
cles. Meanwhile, another 8 points are being read, and the
cycle repeats. The following examples will refer to writing
data, but it is to be understood that reading data is an
analogous operation that is happening simultaneously.

If the sequential example from Fig. 3 were implemented
using Fig. 6, the first point on the high channel would be
stored in the EO memory slice, the second point on the
high channel in the H1 memory slice, and so on. Some-
thing muet designate which memory slice a point will be
written to. In this simple example, the answer is obvious.
The bottom 2 counter bits can be fed directly to the de-
multiplexer to specify where to steer the data. (This is
a slight oversimplification. In actual implementation, the
input registers must include clock enables that depend on
the same 2 bits.)

More complex situations demand a more formal ap-
proach. The 8 memory slices can be distinguished with
a %bit number, M = (M 2 , M I , M o) . Since each group of
8 data points is written simultaneously, each point within
the group must be written to a different memory slice.
Thus, the 8 different data indices must each designate a
different memory. It is known that these 8 points all ar-
rived within 4 clocks of each other. That means that all the
bits of the indices will be the same except for the 2 least-
significant (fastest changing) counter bits and the hi/lo
bit. These 3 bits must all be what are called memory-
selection bits. The memory-slice number, M , is a function
of those 3 bits, and the 8 possible values of the 3 bits must
correspond to every possible value of M. To clarify no-
tation, M is the 3-bit number that specifies the memory
slice, Mnumber is one of the bits of M, and MIetrer is a
memory selection bit within the data index number. Each
Mnumber is a function of one or more M/elter bits.

Let the hi/lo bit be named Ma, the least-significant
counter bit Mb, and the second counter bit h&. In the
example of Fig. 3, the simplest solution is

M2 = Ma

M i = Me

Under this scheme, the data from the high channel will fill
memory slices 0 to 3 in sequential order, and the data from
the low channel will fill memory slices 4 to 7 in order. How-
ever, it is perfectly reasonable to use a different ordering.
For example, the functions could have been defined

where is taken to be the C-language symbol for
“exclusive-or.”

At time t = 0, the high-channel data will be written to
memory slice 0 and the low channel to slice 4. At t = 1,

= 1 and Me = 0, so the high-channel data will be
written to slice 3 and the low channel to slice 7. At t = 2,
high-channel data will be written to slice 1 and low data
to slice 5 . Finally, a t t = 3, high and low data are written
to slices 2 and 6, respectively. The cycle repeats a t times
t = 4,8,12, and so on.

VI. INBUF Board
The first (and simplest) memory board in the system

is the INBUF board. Data enter sequentially:

HI CHANNEL : 0, 2, 4, 6, 8, 1 . .

LO CHANNEL: 1, 3, 5, 7, 9,

This ordering can be represented as 22 address bits, la-
beled A to V, with V being the least-significant (hi/lo)
bit (see Fig. 7). The data can also be looked at as be-
ing in a large 4096-by-1024 matrix, without altering the
ordering at all. Step 1 is a purely conceptual step. The
most-significant 12 bits designate the row number. The
least-significant 10 bits specify the column (or position
within the row). The row bits are separated from the
column bits by a hyphen. As a standard convention, the
least-significant bits are always row bits unless otherwise
specified.

297

To fully reap the benefits of doing an FFT, the first
stage operates on the samples that are most widely sepa-
rated in time [3]. Subsequent stages work on data points
nearer each other in time, and the last stage operates on
sequential samples. In terms of the matrix FFT, the first
super-stage should operate on the vector that contains
samples (S0,Slk,S2k,S4k,Ssk,...S4~~g-lk) . This is the
first column of the matrix. (The first super-stage operates,
of course, on each individual column, not just the first.)

The FFT boards that follow the INBUF operate on
groups of 4 kpoints of data at a time. To minimize the
amount of memory required within the FFT boards, those
4 kpoints should enter sequentially, so the INBUF board
transposes the matrix in Step 2. The old row bits become
column bits and vice versa.

The next reorganizational step (Step 3) is dictated by a
knowledge of the inner workings of the FFT boards. They
have been designed to do a separate FFT on each chan-
nel, with no data being shared between the high and low
channels. Thus, a given row appears on one channel or
the other, not both. This requires that the hi/lo bit be a
row bit. The least-significant row bit moves to the hi/lo
position.

Step 4 also depends upon the particular architecture of
the FFT boards. They contain cascaded stages of radix-4
FFT’s, which do Ppoint FFT’s on groups of the incom-
ing data. The first stage does its work on the following
quadruples :

I

The order in which these quadruples appear is not impor-
tant, but the order of the points within each quadruple is.
So the two most-significant column bits move to the least-
significant positions, creating what is known as high-low
radix-4 order. I

This completes the required reordering of the INBUF
board. If data are written sequentially, A through V (as at
the top of Fig. 7), and read using the addressing scheme at
the bottom of the figure, M through V , all the necessary
operations will be performed in a single step. Unfortu-
nately, if this addressing pattern is implemented using a
single buffer, the pattern only repeats every 21 spectra (a

seen in Fig. 8). The worst feature of this particular de-
sign is that each address bit appears in a different column
each spectrum. Thus, each and every address bit is a func-
tion of 21 different data-counter bits and a &bit spectrum
counter, yielding huge unwieldy logic equations. With a
little ingenuity, this can be simplified greatly.

Figure 9 demonstrates the design process of an efficient
scheme. Step 1 is the same as before, and Steps 2 and 3 are
similar. As noted before, the order in which the quadruples
come is irrelevant. In fact, the order in which the rows
come is also irrelevant. The only bits that are fixed are the
2 least-significant column bits, A and B. The other column
bits are all interchangeable, as are the row bits, so they are
all left blank. (Column bits are not interchangeable with
row bits because a complete row must go into each channel
of the FFT before the next row enters. This ensures that
a separate FFT is being done on every single row. Thus,
row and column bits are specified as such although they
are not specifically identified.)

The goal of this method is to keep the addressing equa-
tions as simple as possible; whenever possible, address bits
will remain in the same locations. This is possible only
in the cases of the 3 least-significant row bits (which be-
come the 3 most-significant column bits) and the least-
significant column bit (which becomes the least-significant
row bit). These bits are J , K , L , and V , respectively. In
Step 5, these bits are assigned to remain in their respective
positions.

A and B are the only bits that are constrained to move
to particular positions. To minimize the cycle number, N ,
these two bits must return to their original positions as
soon as possible, preferably after the next cycle. Thus,
it is desirable that whichever bits lie in the second and
third positions from the right in one spectral addressing
will move to the two most-significant positions one spec-
trum later. By extension, T and U , which were in the
second and third positions before the transformation, are
required to be in the most-significant positions after the
transformation. See Step 6.

By Step 7, all the constraints of the INBUF board have
been satisfied, so a column order that is beneficial to the
FFT boards is used. (This particular order allows the four
FFT boards that comprise the two stages of the FFT to be
built as identical copies of each other and minimizes the
amount of memory needed to reorganize the data between
each internal stage.) Once this order has been determined,
the rest of the design follows from matching pairs of ad-
dress bits in the same manner that A and T were matched
and B and U were matched. This ordering scheme repeats
after two spectra, which can easily be verified.

I 298

Now the design of the transformation is complete, but some conceptual difficulties and requires different address
the implementational design remains. The implementa- lines to different slices of memory. But remember that
tional phase occurs when the 22 data-index bits, originally Ala is defined as being equivalent to M e , which in turn is
dubbed A through V , are designated as memory-selection equivalent to MO * M E , where
bits or addressing bits. Because the design requires an
eight-way memory interleave, three of the bits will be
reserved for memory selection. The memories are each
512 kpoints deep, requiring 19 addressing bits (although
some of these will also be used for memory selection).

is “exclusive-or.” Thus:

Ala = c 2 0

for memory slices 0, 2, 4, and 6, and

Figures 10 and 11 describe the process of renaming the
data-index bits. A bit chosen as an addressing bit is re-
named Anumber, and a memory-selection bit is renamed
MIetter. These are just new names for the bits that were
previously designated A through V . The old names were
only placeholders; the new names also give information
about how the transformation will be implemented.

There is a lot of freedom here, but the most straight-
forward choice is to assign the 3 memory-selection bits in
the right-hand positions and the 19 address bits in order
to the left (see Fig. 10). This works fine for spectrum 0.
However, when the address bits have been transformed for
spectrum 1, only one memory-selection bit remains in the
three right-hand spots. This means that when a group of
8 data points comes in, the board will attempt to write
them all to only two memory slices.

This problem is alleviated by stipulating that A and
B must also be memory-selection bits as well as address
bits (see Fig. 11). MO is now a function of both A and T ,
“exclusive-or”-ing bit A with bit T . This ensures that out
of each group of 8 data points, half will be directed to even
memory slices and half to odd memory slices. Likewise, B
is “exclusive-or”-ed with U to determine MI. Now each
group of four clocks (100 nsec) accesses all eight memory
slices. Note: Only groups that start on a 100-nsec bound-
ary (Cl = Co = hi/lo = 0) need to be considered.

Now the design of the INBUF is complete. The Boolean
equations for each address bit can be read directly off of
Fig. 11. For instance, A0 is equivalent to Cz during spec-
trum 0, and it is equivalent to C17 during spectrum 1:

A0 = (CZ * S’) + (c17 * S)

for memory slices 1, 3, 5, and 7. Equations for A17 can be
similarly derived.

VII. Different Transformations
All previously mentioned transformations reorganized

the address bits but leave the bits unchanged. Sometimes,
the designer may wish to read out the data using address
bits that are functions of, but not identical to, the original
address bits. The simplest example is reverse order. If
data are written sequentially, using address bits A , B , and
C, they can be read out in reverse order by just inverting
the address bits, as shown below:

Counter (A , B , C) 000 001 010 011 . . .

Data in 0 1 2 3 . . .

Reverse counter (A’, B’, C’) 111 110 101 100 .. .

Data out 7 6 5 4 . . .

Another useful transformation is the downcounter
transformation, which is easily implemented by substitut-
ing a downcounter for the regular counter. The bits of the
downcounter are indicated as 2, g , 6.

Counter (A , B , C) 000 001 010 011

0 1 2 3 . . . Data in

Downcounter (.?,B,C), 000 111 110 101 ...

Data out 0 7 6 5 . . . where S is the 1-bit spectrum counter, Cnumber is a bit
selected from the 21-bit data counter, ’ is logical “not,” +
is logical “or,” and * is logical “and.” Similar equations
can be found for A1 to AI^.

These two operations have one thing in common; they
are reversible. That means that after the address bits are
transformed, no information is lost; the original address

Notice that two address bits occur in the least- bits can still be recovered. Reversibility is important be-
cause it prevents memory slices from attempting to write significant three places during spectrum l. This causes

299

I
multiple data points to the same spot. There are many
reversible operations, such as “exclusive-or”-ing two bits
(as in Fig. 11).

VIII. Limitations
The use of single buffers is limited by two consid-

erations. First, the interleaving required to implement
read/write cycles a t the proper speed may require as much
memory as a double buffer. In such a case, no savings
would be realized by using a single buffer.

The other consideration is the complexity of the ad-
dressing, which may rise t o a point of impracticality.

IX. Conclusion
Visualizing a data stream as a vector of addressing bits

allows the designer to treat data reorganization as a matrix
transformation on that vector. This allows the designer
to easily manipulate many transformations at once and
find data orderings that are beneficial to other boards in
the system. It also allows the designer to find address
patterns that make single-buffer memory banks possible
(as opposed to double-buffer banks), further reducing the
necessary hardware.

Once an address bit
the implementation can
outlined in this article.

transformation has been chosen,
be easily designed using methods

References

[I] M. Quirk, M. Garyantes, H. Wilck, and M. Grimm, “A Wide-Band High-
Resolution Spectrum Analyzer,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 12, pp. 1854-1861, December 1988.

[2] M. Garyantes, M. Grimm, and G. Zimmerman, “A Wideband High Resolution
Digital Spectrum Analyzer for the Search for Extraterrestrial Intelligence,” in
preparation for the 1992 IEEE International Conference on Acoustics, Speech,
and Signal Processing.

[3] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, New Jersey: Prentice-Hall, pp. 356-371, 1975.

I 300

4-Mvector
(TIME SAMPLES) 1 -K x 4-K MATRIX 1-K x 4-K MATRIX 4-K x 1-K MATRIX

TRANSPOSE TRANSPOSE

4-Mvector 4-Mvector
4-K x 1 -K MATRIX (SCRAMBLED FREQUENCIES) (SEQUENTIAL FREQUENCIES)

HI CHANNEL OUT . >
I &K I I 8-K I I 4-M I

I DOUBLE I I SINGLE I

3 I BUFFER I I BUFFER I I BUFFER I Low C"+lEL OUT > L - - A L - - A

MATRIX
K - KKopolNTS TRANSPOSE

HIGH CHANNEL INDEX I 5130 = 0000000001010000001010 INDEX = 5132 = 0000000001010000001 100

Fig. 1. SSSP.

INDEX = 5134 = 0000000001010000001 110

LWCHANNEL INDEX = 5131 = 000000000101000000101 1 INDEX = 5133 = 0000000001010000001 101 INDEX = 5135 = 0000000001010000001 11 1

Fig. 2. Relating the time counter to the index number.

8 10 12 0 2 4 6

INPUT - SEQUENTIAL ORDER (Ag Ap A1 Ao)

T=000 T=W1 T=010 T=011 T=100 T=101 T-110 T=111
HIGHCHANNEL(HI/LO=O)A~A~& 4 E 0000 0010 0100 0110 1000 1010 1100 1110

14

11 13 1 3 5 7 9

LOWCHANNEL(HVLO-1)AqAoA~An r 0001 0011 0101 0111 1001 1011 1101 1111

15

0 1 2 3 4 5 6 7

0 9 10 11 12

Fig. 3. Relating input order to a binary counter.

13 14 15

301

(a)
WRITE

READ

HIGHDATAIN 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

BUFFER A
ADDRESSING

30

BUFFER B
ADDRESSING

LOWDATAIN 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

(b)

WRITE

READ

READMRITE
ADDRESSING

31

SPECO I SPECl I SPEC2 I SPEC3 I SPEC4 I SPEC 5

0 - 7 8-15

I SPECO I SPECl I SPEC2 I SPEC3 I SPEC 4

16-23

I WRITE = SEQ I READ = T I WRITE = SEQ I READ = T I WRITE = SEQ I READ = T

A B C D E C A D E B A B C D E C A D E B A B C D E C A D E B

k R l T E = SEQ 1 READ = T I WRITE = SEQ I READ = T I WRITE = SEQ I
A B C D E C A D E B A B C D E C A D E B A B C D E

SPECO I SPECl I SPEC2 I SPEC3 I SPEC4 [SPEC 5

I SPECO I SPECl I SPEC2 I SPEC3 1 SPEC 4

Fig. 4. How to address memories: (a) using a double buffer and (b) using a single buffer.

WRITE CYCLE

Fig. 5. Timing of eight-way interleave.

HIGH
DATA IN

MEMORY 2 I tw
MEMORY 3

LOW
DATA IN

MEMORY 7

Fig. 6. Memory buffer divided into eight slices.

302

HIGH
DATA OUT

LOW
DATA OUT

INTO INBUF
4 M (SEQUENTIAL)

SEQUENTIAL-
4 A B C D E F G H I J K L M N O P O R S T U V I HIL

STEP 1 - MATRlClZE
4 K (SEQUENTIAL) x I K (SEQUENTIAL)

T

A
L

I

ROW COLUMN

STEP 2 - CORNER-TURN
1 K (SEQUENTIAL) x 4 K (SEQUENTIAL)

a - SEQUENTIAL-
M N O P O R S T U V - A B C D E F G H I J K L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ - - -

I I

NEW ROW - OLD COLUMN NEW COLUMN - OLD ROW
I T I I
A
L

STEP 3 - PUT SEPARATE ROWS ON EACH CHANNEL
1 K (SEQUENTIAL) x 4 K (SEQUENTIAL ON EACH CHANNEL)

Q- HL-RADIX-4-
M N O P 0 R S T U - A B C D E F G H I J K L - 1

I U
_ _ _ - _ _ - _ _ ___-- - - - - - - -

COLUMN ROW

A
L

STEP 4 - PUT COLUMNS IN HL-RADIX-4 ORDER
1 K (SEQUENTIAL) x 4 K (HL-RADIX4 ON EACH CHANNEL)

Q - HL-RADIX-4-
M N O P O R S T U - C D E F G H I J K L A B - !

1 ' J U
_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - -

COLUMN ROW

A
L

Fig. 7. INBUF data reordering.

303

SPECTRUM = 0
SPECTRUM = 1
SPECTRUM = 2
SPECTRUM = 3
SPECTRUM = 4
SPECTRUM = 5
SPECTRUM = 6
SPECTRUM = 7
SPECTRUM = 8
SPECTRUM = 9
SPECTRUM = 10
SPECTRUM = 11
SPECTRUM = 12
SPECTRUM = 13
SPECTRUM = 14
SPECTRUM = 15
SPECTRUM = 16
SPECTRUM = 17
SPECTRUM = 18
SPECTRUM = 19
SPECTRUM = 20
SPECTRUM I 0

‘20 ‘19 ‘18 ‘17 ‘16 ‘15 ‘14 ‘13 ‘12 ‘11 ‘10 ‘9 ‘8 ‘7 ‘6 ‘5 ‘4 ‘3 ‘2 ‘1 cO “lL0

A B C D E F G H I J K L M N O P O R S T U V
M N O P O R S T U C D E F G H I J K L A B V
F G H I J K L A B O P O R S T U C D E M N V
R S T U C D E M N H I J K L A B O P O F G V
K L A B O P O F G T U C D E M N H I J R S V
D E M N H I J R S A B O P O F G T U C K L V
P O F G T U C K L M N H I J R S A B O D E V
I J R S A B O D E F G T U C K L M N H P O V

B O D E F G T I J K L M N H P O R S A U C V
N H P O R S A U C D E F G T I J K L M B O V
G T I J K L M B O P O R S A U C D E F N H V
G A U C D E F N H I J K L M B O P O R G T V
L M B O P O R G T U C D E F N H I J K S A V
E F N H I J K S A B O P O R G T U C D L M V
O R G T U C D L M N H I J K S A B O P E F V
J K S A B O P E F G T U C D L M N H I O R V
C D L M N H I O R S A B O P E F G T U J K V
O P E F G T U J K L M N H I O R S A B C D V
H I O R S A B C D E F G T U J K L M N O P V
T U J K L M N O P O R S A B C D E F G H I V
A B C D E F G H I J K L M N O P Q R S T U V

U C K L M N H P O R S A B O D E F G T I J v

Fig. 8. INBUF transformation sequence.

I 304

INTO INBUF
4 M (SEQUENTIAL)

SEQUENTIAL- 4 A B C D E F G H I J K L M N O P Q R S T U V [Hn .
STEP 1 - MATRlClZE
4 K (SEQUENTIAL) x 1

SEQUENTWL

T

A
L

K (SEWEN1 IAL)

STEP 2 - CORNER-TURN
1 K (TBD) x 4 K (TBD)
-nn-

- - -__-_---_ ------------
I

NEW ROW - OLD COLUMN NEW COLUMN = OLD ROW

STEP 3 -SEPARATE ROWS ON EACH CHANNEL
1 K (TBD) x 4 K (TBD ON EACH CHANNEL)

TBD-
- - - _ _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ -

I t I U

ROW COLUMN ROW
I

D

STEP 4 - BITS A AND BARE FIXED
1 K (TBD) x 4 K (TED ON EACH CHANNEL)

STEP 5 -LEAVE J, K, L, AND VADDRESS BITS IN THE SAME POSITIONS
1 K (TBD) x 4 K (TBD ON EACH CHANNEL)

TED-

STEP 6 -CHOOSE TAND U T 0 MINIMIZE COMPLEXITY
1 K (TBD) x 4 K (TED ON EACH CHANNEL)

TBD-
- J K L A B -1

I U
_ _ _ _ _ _ _ _ _ _ _ -

D ROW COLUMN ROW

STEP 7 - PlCK A COLUMN ORDER THAT IS CONVENIENT FOR THE FFT
1 K (TBD) x 4 K (RANDYS COLUMN ORDER ON EACH CHANNEL)
RANDYS COLUMN ORDER

ROW
D+'

COLUMN ROW

STEP 8 -PICK A ROW ORDER TO MINIMIZE COMPLEXITY
1 K (RANDYS ROW ORDER) x 4 K (RANDY'S COLUMN ORDER ON EACH CHANNEL)
RANDYS COLUMN ORDER

Fig. 9. Revised INBUF data reordering.

305

c20 c19 c18 ‘17 c16 c15 c14 c13 c12 ‘11 ‘10 ‘9 ‘8 ‘7 ‘6 ‘5 ‘4 ‘3 ‘2 cl cO.

SPECTRUMEO A B C D E F G H l J K L M N O P O R S T U V
A17 A16 A15 A14 A13 A 1 O A9 A7 A6 A5 A4 A3 A2 A1 AO

Mb Ma

M2 = Ma
M1 = Mb

Mo = Me

SPECTRUM=l T U R S P O M N O J K L G H I E F C D A B V

Mb Ma
A O A3 A2 A6 A5 A4 A9 A7 A1O A14 A13 A16 A15 A17

M2 = Ma
MI = Mb

Mo = M,

Fig. 10. Revised INBUF transformation sequence.

c19 c18 c17 ‘16 c15 ‘14 c13 c12 ‘10 ‘9 ‘8 ‘7 ‘6 ‘5 ‘4 ‘3 ‘2 ‘1 cO

SPECTRUM=O A B C D E F G H l J K L M N O P O R S T U V
A17 A16 A15 A13 A12 A1O A9 A8 A7 A6 A 5 A4 A3 A 2 A O

Me Md Mb Ma

SPECTRUM=l T U R S P O M N O J K L G H I E F C D A B V
A1 A O A3 A 2 A6 A5 A4 A9 A7 A12 A10 A14 A13 A16 A15 A17

Mb Me Md Ma

M2 = Ma

M1 = Mb A Md

Mo = M, A Me

Fig. 11. Final INBUF transformation sequence.

I 306

